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he performance of microprocessors that power modern 
computers has continued to increase exponentially 
over the years for two main reasons. First, the transis-
tors that are the heart of the circuits in all processors 
and memory chips have simply become faster over 
time on a course described by Moore’s law,1 and this 
directly affects the performance of processors built 
with those transistors. Moreover, actual processor per-
formance has increased faster than Moore’s law would 
predict,2 because processor designers have been able to 
harness the increasing numbers of transistors avail-
able on modern chips to extract more parallelism from 

software. This is depicted in fi gure 1 for Intel’s processors.
An interesting aspect of this continual quest for more parallelism is that it has been 

pursued in a way that has been virtually invisible to software programmers. Since they 
were invented in the 1970s, microprocessors have continued to implement the conven-
tional von Neumann computational model, with very few exceptions or modifi cations. 
To a programmer, each computer consists of a single processor executing a stream of 
sequential instructions and connected to a monolithic “memory” that holds all of the 
program’s data. Because the economic benefi ts of backward compatibility with earlier 
generations of processors are so strong, hardware designers have essentially been limited 
to enhancements that have maintained this abstraction for decades. On the memory 
side, this has resulted in processors with larger cache memories, to keep frequently 
accessed portions of the conceptual “memory” in small, fast memories that are physi-
cally closer to the processor, and large register fi les to hold more active data values in an 
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extremely small, fast, and compiler-managed region of 
“memory.” 

Within processors, this has resulted in a variety of 
modifi cations designed to achieve one of two goals: 
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every 
cycle, or increasing the clock frequency of the processor 
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence 
of stages has allowed designers to increase clock rates 
as instructions have been sliced into larger numbers of 
increasingly small steps, which are designed to reduce 
the amount of logic that needs to switch during every 
clock cycle. Instructions that once took a few cycles to 
execute in the 1980s now often take 20 or more in today’s 
leading-edge processors, allowing a nearly proportional 
increase in the possible clock rate. 

Meanwhile, superscalar processors were developed to 
execute multiple instructions from a single, conventional 
instruction stream on each 
cycle. These function by 
dynamically examining 
sets of instructions from 
the instruction stream 
to fi nd ones capable of 
parallel execution on each 
cycle, and then executing 
them, often out of order 
with respect to the original 
program. 

Both techniques have 
fl ourished because they 
allow instructions to 
execute more quickly while 
maintaining the key illu-
sion for programmers that 
all instructions are actually 
being executed sequen-
tially and in order, instead 
of overlapped and out of 

order. Of course, this illusion is not absolute. Performance 
can often be improved if programmers or compilers 
adjust their instruction scheduling and data layout to 
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important 
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for 
processor designers to continue using these techniques 
to enhance the speed of modern processors. Typical 
instruction streams have only a limited amount of usable 
parallelism among instructions,3 so superscalar processors 
that can issue more than about four instructions per cycle 
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors 
have been at extracting instruction parallelism over time. 
There is a fl at region before instruction-level parallelism 
was pursued intensely, then a steep rise as parallelism was 
utilized usefully, followed by a tapering off in recent years 
as the available parallelism has become fully exploited. 

Complicating matters further, building superscalar 
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the 
complexity of all the additional logic required to fi nd 
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that 
can be issued simultaneously. Similarly, pipelining past 
about 10-20 stages is diffi cult because each pipeline stage 
becomes too short to perform even a minimal amount of 
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logic, such as adding two integers together, beyond which 
the design of the pipeline is signifi cantly more complex. 
In addition, the circuitry overhead from adding pipeline 
registers and bypass path multiplexers to the existing 
logic combines with performance losses from events that 
cause pipeline state to be fl ushed, primarily branches. 
This overwhelms any potential performance gain from 
deeper pipelining after about 30 stages. 

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the 
high-speed central logic within each processor core—so 
many, in fact, that few companies can afford to hire 
enough engineers to design and verify these processor 
cores in reasonable amounts of time. These trends have 
slowed the advance in processor performance somewhat 
and have forced many smaller vendors to forsake the 
high-end processor business, as they could no longer 
afford to compete effectively.

Today, however, all progress in conventional processor 
core development has essentially stopped because of a 
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course 
of the past two decades, typical high-end microprocessor 
power went from less than a watt to over 100 watts. Even 
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required 
less power to switch, this was true in practice only when 
existing designs were simply “shrunk” to use the new 

process technology. Processor designers, however, kept 
using more transistors in their cores to add pipelining 
and superscalar issue, and switching them at higher and 
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent 
processor generation (as illustrated in fi gure 3). 

Unfortunately, cooling technology does not scale 
exponentially nearly as easily. As a result, processors went 
from needing no heat sinks in the 1980s, to moderate-size 
heat sinks in the 1990s, to today’s monstrous heat sinks, 
often with one or more dedicated fans to increase airfl ow 
over the processor. If these trends were to continue, the 
next generation of microprocessors would require very 
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most 
expensive systems.

The combination of limited instruction parallelism 
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling 
limitations has limited future speed increases within 
conventional processor cores to the basic Moore’s law 
improvement rate of the underlying transistors. This 
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus 
away from simple core clock rate. 

Although larger cache memories will continue to 
improve performance somewhat, by speeding access to 
the single “memory” in the conventional model, the 
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases 
will slow dramatically 
in the future. Processor 
designers must fi nd new 
ways to effectively utilize 
the increasing transis-
tor budgets in high-end 
silicon chips to improve 
performance in ways that 
minimize both additional 
power usage and design 
complexity. The market 
for microprocessors has 
become stratifi ed into areas 
with different performance 
requirements, so it is useful 
to examine the problem 
from the point of view 
of these different perfor-
mance requirements.
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THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable 
of handling a multitude of independent requests arriving 
rapidly over the network has increased dramatically. Since 
individual network requests are typically completely 
independent tasks, whether those requests are for Web 
pages, database access, or fi le service, they are typically 
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a), 
a technique that has been used at places like Google for 
years to match the overall computation throughput to 
the input request rate.4 

As the number of requests increased over time, more 
servers were added to the collection. It has also been 
possible to replace some or all of the separate servers with 
multiprocessors. Most existing multiprocessors consist 
of two or more separate processors connected using a 
common bus, switch hub, or network to shared memory 
and I/O devices. The overall system can usually be physi-
cally smaller and use less 
power than an equiva-
lent set of uniprocessor 
systems because physically 
large components such 
as memory, hard drives, 
and power supplies can be 
shared by some or all of 
the processors.

Pressure has increased 
over time to achieve more 
performance per unit 
volume of data-center 
space and per watt, since 
data centers have fi nite 
room for servers and their 
electric bills can be stagger-
ing. In response, the server 
manufacturers have tried 
to save space by adopting 
denser server packaging 

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power 
reduction has also occurred through the sharing of more 
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component 
density that can still be effectively air-cooled. As a result, 
the next stage of development for these systems involves 
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market 
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation 
for this is reduced volume—multiple processors can now 
fi t in the space where formerly only one could, so overall 
performance per unit volume can be increased. Some 
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the 
rest of the system, reducing the amount of high-speed 
communication infrastructure required, in addition to 
the sharing possible with a conventional multiprocessor. 
Some CMPs, such as the fi rst ones announced from AMD 
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one 
or more levels of on-chip cache (fi gure 4c), which allows 
interprocessor communication between the CMP cores 
without off-chip accesses.

Further savings in power can be achieved by taking 
advantage of the fact that while server workloads require 
high throughput, the latency of each request is generally 
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not as critical.10 Most users will not be bothered if their 
Web pages take a fraction of a second longer to load, but 
they will complain if the Web site drops page requests 
because it does not have enough throughput capacity. A 
CMP-based system can be designed to take advantage of 
this situation. 

When a two-way CMP replaces a uniprocessor, it is 
possible to achieve essentially the same or better through-
put on server-oriented workloads with just half of the 
original clock speed. Each request may take up to twice 
as long to process because of the reduced clock rate. With 
many of these applications, however, the slowdown will 
be much less, because request processing time is more 
often limited by memory or disk performance than by 
processor performance. Since two requests can now be 
processed simultaneously, however, the overall through-
put will now be the same or better, unless there is serious 
contention for the same memory or disk resources. 

Overall, even though performance is the same or only 
a little better, this adjustment is still advantageous at the 
system level. The lower clock rate allows us to design the 
system with a signifi cantly lower power supply voltage, 
often a nearly linear reduction. Since power is propor-
tional to the square of the voltage, however, the power 
required to obtain the original performance is much 
lower—usually about half (half of the voltage squared = a 
quarter of the power, per processor, so the power required 
for both processors together is about half), although the 
potential savings could be limited by static power dis-
sipation and any minimum voltage levels required by the 
underlying transistors. 

For throughput-oriented workloads, even more power/
performance and performance/chip area can be achieved 
by taking the “latency is unimportant” idea to its extreme 
and building the CMP with many small cores instead of a 
few large ones. Because typical server workloads have very 

low amounts of instruc-
tion-level parallelism and 
many memory stalls, most 
of the hardware associated 
with superscalar instruc-
tion issue is essentially 
wasted for these applica-
tions. A typical server will 
have tens or hundreds 
of requests in fl ight at 
once, however, so there is 
enough work available to 
keep many processors busy 
simultaneously. 

Therefore, replacing 
each large, superscalar pro-
cessor in a CMP with sev-
eral small ones, as has been 
demonstrated successfully 
with the Sun Niagara,11 
is a winning policy. Each 
small processor will process 
its request more slowly 
than a larger, superscalar 
processor, but this latency 
slowdown is more than 
compensated for by the 
fact that the same chip 
area can be occupied by 
a much larger number of 
processors—about four 
times as many, in the case 
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of Niagara, which has eight single-issue SPARC processor 
cores in a technology that can hold only a pair of super- 
scalar UltraSPARC cores.

Taking this idea one step further, still more latency 
can be traded for higher throughput with the inclusion 
of multithreading logic within each of the cores.12,13,14 
Because each core tends to spend a fair amount of time 
waiting for memory requests to be satisfi ed, it makes 
sense to assign each core several threads by including 
multiple register fi les, one per thread, within each core 
(fi gure 4d). While some of the threads are waiting for 
memory to respond, the processor may still execute 
instructions from the others. 

Larger numbers of threads can also allow each proces-
sor to send more requests off to memory in parallel, 
increasing the utilization of the highly pipelined memory 
systems on today’s processors. Overall, threads will typi-
cally have a slightly longer latency, because there are 
times when all are active and competing for the use of the 
processor core. The gain from performing computation 
during memory stalls and the ability to launch numerous 
memory accesses simultaneously more than compensates 
for this longer latency on systems such as Niagara, which 
has four threads per processor or 32 for the entire chip, 
and Pentium chips with Intel’s Hyperthreading, which 
allows two threads to share a Pentium 4 core.

LATENCY PERFORMANCE IMPROVEMENT
The performance of many important applications is mea-
sured in terms of the execution latency of individual tasks 
instead of high overall throughput of many essentially 
unrelated tasks. Most desktop processor applications still 
fall in this category, as users are generally more concerned 
with their computers responding to their commands 
as quickly as possible than they are with their comput-
ers’ ability to handle many commands simultaneously, 
although this situation is changing slowly over time as 
more applications are written to include many “back-
ground” tasks. Users of many other computation-bound 
applications, such as most simulations and compilations, 

are typically also more interested in how long the pro-
grams take to execute than in executing many in parallel.

Multiprocessors can speed up these types of applica-
tions, but it requires effort on the part of programmers 
to break up each long-latency thread of execution into a 
large number of smaller threads that can be executed on 
many processors in parallel, since automatic paralleliza-
tion technology has typically functioned only on Fortran 
programs describing dense-matrix numerical computa-
tions. Historically, communication between processors 
was generally slow in relation to the speed of individual 
processors, so it was critical for programmers to ensure 
that threads running on separate processors required only 
minimal communication with each other. 

Because communication reduction is often diffi cult, 
only a small minority of users bothered to invest the time 
and effort required to parallelize their programs in a way 
that could achieve speedup, so these techniques were 
taught only in advanced, graduate-level computer science 
courses. Instead, in most cases programmers found that it 
was just easier to wait for the next generation of uni-
processors to appear and speed up their applications for 
“free” instead of investing the effort required to parallel-
ize their programs. As a result, multiprocessors had a hard 
time competing against uniprocessors except in very large 
systems, where the target performance simply exceeded 
the power of the fastest uniprocessors available.

With the exhaustion of essentially all performance 
gains that can be achieved for “free” with technologies 
such as superscalar dispatch and pipelining, we are now 
entering an era where programmers must switch to more 
parallel programming models in order to exploit multi-
processors effectively, if they desire improved single-pro-
gram performance. This is because there are only three 
real “dimensions” to processor performance increases 
beyond Moore’s law: clock frequency, superscalar instruc-
tion issue, and multiprocessing. We have pushed the 
fi rst two to their logical limits and must now embrace 
multiprocessing, even if it means that programmers will 
be forced to change to a parallel programming model to 
achieve the highest possible performance.

Conveniently, the transition from multiple-chip 
systems to chip multiprocessors greatly simplifi es the 
problems traditionally associated with parallel program-
ming. Previously it was necessary to minimize commu-
nication between independent threads to an extremely 
low level, because each communication could require 
hundreds or even thousands of processor cycles. Within 
any CMP with a shared on-chip cache memory, however, 
each communication event typically takes just a handful 
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of processor cycles. With latencies like these, communica-
tion delays have a much smaller impact on overall system 
performance. Programmers must still divide their work 
into parallel threads, but do not need to worry nearly as 
much about ensuring that these threads are highly inde-
pendent, since communication is relatively cheap. This is 
not a complete panacea, however, because programmers 
must still structure their inter-thread synchronization 
correctly, or the program may generate incorrect results or 
deadlock, but at least the performance impact of commu-
nication delays is minimized. 

Parallel threads can also be much smaller and still be 
effective—threads that are only hundreds or a few thou-
sand cycles long can often be used to extract parallelism 
with these systems, instead of the millions of cycles long 
threads typically necessary with conventional parallel 
machines. Researchers have shown that parallelization 
of applications can be made even easier with several 
schemes involving the addition of transactional hardware 
to a CMP.15,16,17,18,19 These systems add buffering logic 
that lets threads attempt to execute in parallel, and then 
dynamically determines whether they are actually parallel 
at runtime. If no inter-thread dependencies are detected 
at runtime, then the threads complete normally. If depen-
dencies exist, then the buffers of some threads are cleared 
and those threads are restarted, dynamically serializing 
the threads in the process. 

Such hardware, which is only practical on tightly cou-
pled parallel machines such as CMPs, eliminates the need 
for programmers to determine whether threads are paral-
lel as they parallelize their programs—they need only 
choose potentially parallel threads. Overall, the shift from 
conventional processors to CMPs should be less traumatic 
for programmers than the shift from conventional proces-
sors to multichip multiprocessors, because of the short 
CMP communication latencies and enhancements such 
as transactional memory, which should be commercially 
available within the next few years. As a result, this para-
digm shift should be within the range of what is feasible 
for “typical” programmers, instead of being limited to 
graduate-level computer science topics.

HARDWARE ADVANTAGES
In addition to the software advantages now and in the 
future, CMPs have major advantages over conventional 
uniprocessors for hardware designers. CMPs require only 
a fairly modest engineering effort for each generation of 
processors. Each member of a family of processors just 
requires the stamping down of additional copies of the 
core processor and then making some modifications to 

relatively slow logic connecting the processors together to 
accommodate the additional processors in each genera-
tion—and not a complete redesign of the high-speed 
processor core logic. Moreover, the system board design 
typically needs only minor tweaks from generation to 
generation, since externally a CMP looks essentially the 
same from generation to generation, even as the number 
of processors within it increases. 

The only real difference is that the board will need 
to deal with higher I/O bandwidth requirements as the 
CMPs scale. Over several silicon process generations, the 
savings in engineering costs can be significant, because 
it is relatively easy to stamp down a few more cores each 
time. Also, the same engineering effort can be amortized 
across a large family of related processors. Simply vary-
ing the numbers and clock frequencies of processors can 
allow essentially the same hardware to function at many 
different price/performance points.

AN INEVITABLE TRANSITION
As a result of these trends, we are at a point where chip 
multiprocessors are making significant inroads into the 
marketplace. Throughput computing is the first and most 
pressing area where CMPs are having an impact. This is 
because they can improve power/performance results 
right out of the box, without any software changes, 
thanks to the large numbers of independent threads that 
are available in these already multithreaded applications. 
In the near future, CMPs should also have an impact in 
the more common area of latency-critical computations. 
Although it is necessary to parallelize most latency-criti-
cal software into multiple parallel threads of execution 
to really take advantage of a chip multiprocessor, CMPs 
make this process easier than with conventional multi-
processors, because of their short interprocessor commu-
nication latencies.

Viewed another way, the transition to CMPs is inevi-
table because past efforts to speed up processor archi-
tectures with techniques that do not modify the basic 
von Neumann computing model, such as pipelining 
and superscalar issue, are encountering hard limits. As a 
result, the microprocessor industry is leading the way to 
multicore architectures; however, the full benefit of these 
architectures will not be harnessed until the software 
industry fully embraces parallel programming. The art of 
multiprocessor programming, currently mastered by only 
a small minority of programmers, is more complex than 
programming uniprocessor machines and requires an 
understanding of new computational principles, algo-
rithms, and programming tools. Q
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